skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lewis, R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 5, 2026
  2. Abstract Massive stars are a major source of chemical elements in the cosmos, ejecting freshly produced nuclei through winds and core-collapse supernova explosions into the interstellar medium. Among the material ejected, long-lived radioisotopes, such as60Fe (iron) and26Al (aluminum), offer unique signs of active nucleosynthesis in our galaxy. There is a long-standing discrepancy between the observed60Fe/26Al ratio by γ-ray telescopes and predictions from supernova models. This discrepancy has been attributed to uncertainties in the nuclear reaction networks producing60Fe, and one reaction in particular, the neutron-capture on59Fe. Here we present experimental results that provide a strong constraint on this reaction. We use these results to show that the production of60Fe in massive stars is higher than previously thought, further increasing the discrepancy between observed and predicted60Fe/26Al ratios. The persisting discrepancy can therefore not be attributed to nuclear uncertainties, and points to issues in massive-star models. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Background & Aims Metabolomic and lipidomic analyses provide an opportunity for novel biological insights. Cholangiocarcinoma (CCA) remains a highly lethal cancer with limited response to systemic, targeted, and immunotherapeutic approaches. Using a global metabolomics and lipidomics platform, this study aimed to discover and characterize metabolomic variations and associated pathway derangements in patients with CCA. Methods Leveraging a biospecimen collection, including samples from patients with digestive diseases and normal controls, global serum metabolomic and lipidomic profiling was performed on 213 patients with CCA and 98 healthy controls. The CCA cohort of patients included representation of intrahepatic, perihilar, and distal CCA tumours. Metabolome-wide association studies utilizing multivariable linear regression were used to perform case–control comparisons, followed by pathway enrichment analysis, CCA subtype analysis, and disease stage analysis. The impact of biliary obstruction was evaluated by repeating analyses in subsets of patients only with normal bilirubin levels. Results Of the 420 metabolites that discriminated patients with CCA from controls, decreased abundance of cysteine-glutathione disulfide was most closely associated with CCA. Additional conjugated bile acid species were found in increased abundance even in the absence of clinically relevant biliary obstruction denoted by elevated serum bilirubin levels. Pathway enrichment analysis also revealed alterations in caffeine metabolism and mitochondrial redox-associated pathways in the serum of patients with CCA. Conclusions The presented metabolomic and lipidomic profiling demonstrated multiple alterations in the serum of patients with CCA. These exploratory data highlight novel metabolic pathways in CCA and support future work in therapeutic targeting of these pathways and the development of a precision biomarker panel for diagnosis. 
    more » « less
  4. Abstract As renewed interest in human space-exploration intensifies, a coherent and modernized strategy for mission design and planning has become increasingly crucial. Biotechnology has emerged as a promising approach to increase resilience, flexibility, and efficiency of missions, by virtue of its ability to effectively utilize in situ resources and reclaim resources from waste streams. Here we outline four primary mission-classes on Moon and Mars that drive a staged and accretive biomanufacturing strategy. Each class requires a unique approach to integrate biomanufacturing into the existing mission-architecture and so faces unique challenges in technology development. These challenges stem directly from the resources available in a given mission-class—the degree to which feedstocks are derived from cargo and in situ resources—and the degree to which loop-closure is necessary. As mission duration and distance from Earth increase, the benefits of specialized, sustainable biomanufacturing processes also increase. Consequentially, we define specific design-scenarios and quantify the usefulness of in-space biomanufacturing, to guide techno-economics of space-missions. Especially materials emerged as a potentially pivotal target for biomanufacturing with large impact on up-mass cost. Subsequently, we outline the processes needed for development, testing, and deployment of requisite technologies. As space-related technology development often does, these advancements are likely to have profound implications for the creation of a resilient circular bioeconomy on Earth. 
    more » « less
  5. Cook, S.; Katz, B.; Moore-Russo, D. (Ed.)
    Professional development (PD) is often recommended to equip faculty to serve racially minoritized students through instruction. However, limited work has examined equity-oriented PD for mathematics faculty, who often hold views of instruction as race-neutral. This contributed report explores the influence of a two-year PD for faculty in a mathematics department engaged in equity-oriented reform at a Hispanic-Serving Institution. We present two cases of white faculty members who demonstrated a limited ability to interrogate their white racial identities in relation to their instructional impact, despite their engagement in a sustained PD designed to promote racial equity. Implications are provided for equity-oriented PD for mathematics faculty. 
    more » « less